Chlorination of lignin by ubiquitous fungi has a likely role in global organochlorine production.
نویسندگان
چکیده
Soils and decayed plant litter contain significant quantities of chlorinated aromatic polymers that have a natural but largely unknown origin. We used cupric oxide ligninolysis coupled with gas chromatography/mass spectrometry to show that Curvularia inaequalis, a widely distributed litter ascomycete, chlorinated the aromatic rings of lignin in wood that it was degrading. In aspen wood decayed for 24 weeks, two chlorolignin fragments, 5-chlorovanillin and 2-chlorosyringaldehyde, were each found at approximately 10 mug/g of wood (dry weight). These levels resemble those of similar structures generally found in unpolluted environmental samples. Fractionation of the extractable proteins followed by tandem mass spectrometric analysis showed that the colonized wood contained a previously described C. inaequalis chloroperoxidase that very likely catalyzed lignin chlorination. Chlorolignin produced by this route and humus derived from it are probably significant components of the global chlorine cycle because chloroperoxidase-producing fungi are ubiquitous in decaying lignocellulose and lignin is the earth's most abundant aromatic substance.
منابع مشابه
Chlorination and cleavage of lignin structures by fungal chloroperoxidases.
Two fungal chloroperoxidases (CPOs), the heme enzyme from Caldariomyces fumago and the vanadium enzyme from Curvularia inaequalis, chlorinated 1-(4-ethoxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)-1,3-dihydroxypropane, a dimeric model compound that represents the major nonphenolic structure in lignin. Both enzymes also cleaved this dimer to give 1-chloro-4-ethoxy-3-methoxybenzene and 1,2-dichloro-4...
متن کاملDetermination of lignin-modifying enzymes (LMEs) in Hyphodermella species using biochemical and molecular techniques
White-rot basidiomycetes are one of the most important lignolytic microorganisms. These fungi have been reported to secrete three main classes of lignin degrading enzymes: lignin peroxidases (LiPs), manganese peroxidases (MnPs) and laccases. In this study, for the first time the lignin degrading capability of two plant pathogens i.e. Hyphodermella rosae and H. corrugata was evaluated using both...
متن کاملRole of fungal peroxidases in biological ligninolysis.
The degradation of lignin by filamentous fungi is a major route for the recycling of photosynthetically fixed carbon, and the oxidative mechanisms employed have potential biotechnological applications. The lignin peroxidases (LiPs), manganese peroxidases (MnPs), and closely related enzymes of white rot basidiomycetes are likely contributors to fungal ligninolysis. Many of them cleave lignin mod...
متن کاملDegradation of xenobiotic compounds by lignin-degrading white-rot fungi: enzymology and mechanisms involved.
White-rot fungi (WRF) are ubiquitous in nature with their natural ability to compete and survive. WRF are the only organisms known to have the ability to degrade and mineralize recalcitrant plant polymer lignin. Their potential to degrade second most abundant carbon reserve material lignin on the earth make them important link in global carbon cycle. WRF degrade lignin by its unique ligninolyti...
متن کاملISEN METAGENOMIC DISCOVERY OF NOVEL LIGNIN - DEGRADING FUNGI FOR BIOFUEL PRODUCTION Louise
BACKGROUND AND OBJECTIVES The bio-conversion of plant lignocellulose to glucose is an key component of second generation biofuel production, but the resistance of lignin to breakdown is a major obstacle in this process. Filamentous fungi possess the unique ability to decompose the aromatic lignin polymers using enzymes encoded by divergent gene families. White-rot fungi are the primary lignin-d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 104 10 شماره
صفحات -
تاریخ انتشار 2007